

Investigating the Dynamics of Canonical Flux Tubes

US-Japan Compact Toroid Workshop 8/24/2016

Jens von der Linden

University of Washington

Jason Sears, Evan Carroll

Lawrence Livermore National Laboratory

Alexander Card, Eric Lavine, Manuel Azura-Rosales

University of Washington

Thomas Intrator

Los Alamos National Laboratory

Setthivoine You

University of Washington

LLNL-PRES-700761

1. Study the stability of lengthening magnetic flux tubes with core and skin currents.

$$\psi = \int \vec{B} \cdot d\vec{S}$$

2. Reconstruct canonical flux tubes from magnetic field and ion flow measurements.

Study the stability of lengthening magnetic flux tubes with core and skin currents. 1.

$$\psi = \int \vec{B} \cdot d\vec{S}$$

2. Reconstruct canonical flux tubes from magnetic field and ion flow measurements.

1. Study the stability of lengthening magnetic flux tubes with core and skin currents.

$$\psi = \int \vec{B} \cdot d\vec{S}$$

2. Reconstruct canonical flux tubes from magnetic field and ion flow measurements.

Study the stability of lengthening magnetic flux tubes with core and skin currents. 1.

$$\psi = \int \vec{B} \cdot d\vec{S}$$

2. Reconstruct canonical flux tubes from magnetic field and ion flow measurements.

Analytical $\overline{k} - \overline{\lambda}$ space: lengthening current-carrying flux tube crosses the sausage instability boundary

Analytical $\overline{k} - \overline{\lambda}$ space: derived with textbook linear ideal MHD but with <u>both</u> core and skin currents

		Simplify Newcor analysis stability	y with mb (1960) s of intern y	Simplif analysi al	Simplify with Bellan (2003) analysis of flared flux tubes			Set wall to ∞ Ignore wall effects	
$\delta W(\xi_r) =$	δ	V _{plas}	+	δW_{intf}	+	δW_{i}	vac	> 0	

 \Downarrow

Stability Criterion

$$\frac{\left[2\bar{k}-m\epsilon\bar{\lambda}\right]\left[(\delta+1)2\bar{k}-(\delta-1)m\epsilon\bar{\lambda}\right]}{\bar{k}^{2}+m^{2}} + (\epsilon^{2}-1)\bar{\lambda}^{2} - \frac{\left(m\bar{\lambda}-2\bar{k}\right)^{2}}{\bar{k}}\frac{K_{m}(|\bar{k}|)}{K'_{m}(|\bar{k}|)} > 0$$

δ can only be determined by integrating Euler-Lagrange equation

Numerical $\delta_a(\bar{\lambda}, \bar{k})$ results: current profile dependence and significant sausage unstable region in $\bar{\lambda} - \bar{k}$ space

1. Study the stability of lengthening magnetic flux tubes with core and skin currents.

2. Reconstruct canonical flux tubes from magnetic field and ion flow measurements.

Reconstructing the RSX gyrating canonical flux tubes

Gyration frequency is coherent across shots. Conditional sampling aligns traces from 3,000 shots.

Reconstructed 3D Canonical Electron Flux Tubes

$$\int \vec{\Omega}_e \cdot d\vec{S} = \int \left(e\vec{B} + m_e \vec{\omega}_e \right) \cdot d\vec{S} \sim \int \vec{B} \cdot d\vec{S}$$

Reconstructed 3D Canonical Ion Flux Tubes $\int \vec{\Omega}_i \cdot d\vec{S} = \int \left(e\vec{B} + m_i \vec{\omega}_i \right) \cdot d\vec{S}$

Ongoing Work: Constraining Ion Flow

Mach measurements incomplete, RSX is decommissioned

 u_{iz} is measured in 2nd and 4th plane, u_{iy} is measured in 4th plane. Need to constrain u_{ix} and extrapolate \vec{u}_i in 3D volume.

 $\vec{J} = nq(u_i - u_e)$

Electrons frozen to magnetic field lines

$$\vec{u}_i \sim \frac{\vec{j}}{nq_e} + \alpha \frac{\vec{B}}{|B|}$$

Use the plane measurements of \vec{u}_i to fit for $\alpha(x, y)$ and match the flux rope rotation as extrapolating along z.

Force Balance

Can the ion flows be extrapolated by balancing the centrifugal and Coriolis force terms balance the $\vec{J} \times \vec{B} - \nabla p$?

Summary

Mochi.LabJet is designed to generate canonical flux tubes with skin and core currents, and axial and azimuthal shear flows.

Analytical and numerical studies indicate that a lengthening flux tube may develop a sausage instability on top of a kink.

Reconstructing canonical flux tubes from magnetic field and ion flow measurements.

This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344.

RSX diagnostic resolution

RSX Shot distributions

